

The best place in Bell County for ASR and why!

David K. Smith

CDM Smith

Feb 7, 2024

Outline

- Aquifer Storage
 Recovery (ASR) Defined
- Ongoing ASR Evaluations in Bell County
- ASR Objectives
- The Sweet Spot

ASR Defined

Aquifer Recharge Technologies

"ASR is one of several aquifer recharge technologies, tailored to the hydrogeologic environment and client needs"

ASR Well Operation – Injection

AQUIFER STORAGE RECOVERY WORKSHOP

ASR Well Operation – Recovery

AQUIFER STORAGE RECOVERY WORKSHOP

Typical Municipal Water ASR

7

ASR Defined (Seasonal)

8

ASR Benefits Already Proven

Storage

- Seasonal storage
- Long term storage (banking)
- Emergency storage / supply
- Reclaimed water storage for reuse

Operation/Infrastructure

- Defer expansion of water facilities
- Peak demand management
- Maintain distribution pressures

Impacts

- Evaporation management
- Environmental river flows / ecosystem maintenance
- Restoration of groundwater levels
- Control subsidence

Ongoing Evaluations in Bell County

ASR Feasibility

- INTERA, with the help of others have performed desktop evaluations of ASR feasibility for Clearwater GCD and member participants, with emphasis on groundwater modelling tools.
- Multiple public ASR workshops held
- Independent feasibility assessments underway

All Candidate Sites

Hosston Properties

Thickness (ft):80 - 1000Transmissivity(ft²/day):680 - 23,500Water Level (ft, msl) :418 - 582Hydraulic Gradient(ft/ft):0.0001 - 0.0003

Phase 3 Evaluations

2a, 2b, 2c, 2d (WCID #1) - not evaluated 3a (City of Temple) - not evaluated

Phase 3 ASR Operations

Recovery Rate (MGD): 0.6 - 6.5Duration (months): 0.5 - 12Storage Volume (MG) : 82 - 2,196

15 Candidates Sites Established in Phase 1

Modeling Approach for Workshop #4

Construct Bell County Model from NTGAM

Refine Grid in Bell County

Validate Bell County Model Simulation with NTGAM

Perform Particle Tracking

City of Rogers: Site 6a

Site Info
Run ID: 6a_2
Entity: City of Rogers
Location: North of Town
ASR Operation
Purpose:Drought Supply
Recovery Rate (MGD): 4.0
Recovery Duration(months): 12
Hosston Info
Total Thickness (ft): 960
Transmissivity(ft2/day): 20,155
Depth (ft): 2,800
Water Level Info
Static Level (ft, msl): 363
Hydraulic Gradient(ft/ft): .0002
Max Draw Up(ft): 96
Max Drawdown(ft): 66
Well Info
Number: 1
Spacing(ft): na
Screened Interval (ft): 200
Max Injection(gpm): 3,319

ASR Objectives

Recharge Objectives

- The rates and volumes of water that need to be recovered impact hydrogeologic suitability
 - Thicker more porous aquifers can store significantly larger volumes
 - More permeable formations allow higher injection and recovery rates
 - Less permeable and/or thinner aquifers still potentially viable, but for smaller ASR systems
- Often the ideal hydrogeological situation does not coincide with locations with excess water or demand centers

Recharge Source Waters

- Multiple source waters possible
 - Surface water
 - Treated stormwater or reservoir flood pool
 - Groundwater from other aquifers
 - High quality reclaim water
- TCEQ UIC sole permitting agency provided water recovered does not exceed the volume recharged
- Water quality standards for recharge in Texas under review

The Sweet Spot!

Geologic Units Potentially Suitable for ASR

Age	Stratigraphic Group	Stratigraphic Unit	Hydrogeologic Unit	Lithologic Description	Hydrogeologic Description	Range of Thickness (ft)	Potential Suitability for ASR
Cretaceous	Navarro		Navarro and	Massive beds of shale and marl with			
	Taylor		Taylor Groups	clayey chalk, clay, sand and some	Yields very small quantites of freshwater	820	Likely unsuitable
	Austin			Massive beds of chalk and marl with			Unlikely to store sufficient water, and unconfined throughout much of the GUS area
			Austin Chalk	bentonite seams, glauconite and pyrite nodules	freshwater	425	
	Eagle Ford			Massive calcareous shale with thin interbeds of silty and sandy flaggy limestone	Not known to yield water	30	Unsuitable
	Washita	Buda Limestone		Massive, fine grained, burrowed, shell- fragment limestone	Not known to yield water	50	Likely unsuitable
		Del Rio Clay		Clay and marl with gypsum, pyrite and a few thin siltsone and sandstone beds	Not known to yield water	60	Confining Layer
		Georgetown Formation	Edwards and associated limestones	Thin interbeds of richly fossiliferous, nodule, massive, finegrained limestone and marl	Yields small to very large quantities of freshwater, especially from cavernous zones	90	Unconfined aquifer over large parts of GUA area, already heavily used for local agricultural and domestic supply. Possible use in confined down-dip areas, but well yields unproven
	Fredricksburg	Kamichi Formation		Marl, thin limestone seams and shell aggregates	Not known to yield water	15	
		Edwards Limestone		Massive, brittle, vugular limestone and dolomiet with nodular chert, gypsum, anhydrite and solution collapse features	Yields small to very large quantities of freshwater, especially from cavernous zones in the Edwards limestone	185	
		Comanche Peak Limestone		Fine-grained, fairly hard, nodular fossiliferous marly, extensively burrowed limestone	Yields little or no water	50	
		Walnut Formation		Hard and soft limestones, marls, clays and shell beds	Yields little or no water	110	
		Paluxy Formation	Upper Trinity	Fine-grained quartz sand, in part undurated by calcium carbonate cement. Locally contains thin beds of limestone and marl	Yields very small to moderate quantities of fresh to moderately saline water	10	Formation thickness not suitable
		Glen Rose Upper member		Alternating beds of limestone, dolomite, shale and marl with some anhydrite and gypsum		430	Worth investigating, but alternating lithologies may be problematic
	Trinity	Glen Rose Lower member	Middle Trinity	Massive, fossiliferous limestone and dolomite in the basal part grading upward into thin beds of limestone, shale, marl and gypsum	Yields very small to moderate quantities of fresh to moderately saline water	430	
		Hensell Sand Member		Sand, gravel, conglomerate,sandstone, siltstone and shale. Grades into sandy limestone and dolomite eastwards		75	
		Cow Creek Limestone Member		Massive, often sandy, dolomitic limestone, contains gypsum and anhydrite beds		80	Potential water quality issues due to anhydrites
		Hammett Shale		Shale and Clay	Not known to yield water in this area	30	Confining Layer
		Member					Potential for ASR. Suitable isolation with
		Hosston Member	Lower Trinity	Basal sand and conglomerate grading upward into a mixture of sand, siltstone and shale with some limestone beds	Yields small to moderate, and with acidizing large quantities of fresh to moderrately saline water	100 - 815	overlying Hammett Shale and underlying Lower Pensylvanian Shales. Potential high yields to the east with increased sand thickness

Groundwater Discussion

Groundwater Discussion

Hosston Aquifer Thickness (limited data)

- In western Bell and Williamson County Hosston geometry reasonably well understood, but generally poor understanding in the east of both counties
- Increasing thickness and depth eastwards
- Not shown, complex fault geometry

Think Strategic!

- Potential ability to store large volumes of water equivalent to a surface reservoir
- Key constraints:
 - Limited hydrogeologic knowledge and test well drilling needed
 - Conveyance costs potentially high
 - Alternate recharge sources to be considered
 - Increasing depths to the Hosston aquifer eastwards

listen. think. deliver.

The best place in Bell County for ASR and why!

